
TDA Seminar

In recent years, the idea to use topological methods to analyze data has gained some
traction. This is mainly due to the development of persistent homology, which generally
works as follows:
We start with some data P that has a notion of distance, usually a finite metric space.

Using the points in P as vertices, one then builds a filtration of simplicial complexes
K•(P ) by successively connecting vertices, edges, etc. via higher dimensional simplices
depending on their distances to each other. Afterwards, we apply homology with field
coefficients to each complex in the filtration and the inclusion maps. This yields a family
of vector spaces H(K•(P )) that are connected by linear maps. The isomorphism type of
such a diagram of vector spaces can be completely described by a discrete invariant called
a barcode that records the dimension of each vector space and all the ranks of the maps
between spaces. The barcode B(H(K•(P ))) can be efficiently computed by performing
column operations on a certain matrix and is then used to infer properties of the initial
data P . Importantly, this inference is stable because the mapping P 7→ B(H(K•(P )))
can be shown to be 1-Lipschitz with respect to appropriate metrics.
The rough plan for the seminar is to first go through all of the above steps in more

detail and answer the following questions: What are the standard ways of constructing
simplicial complexes from finite metric spaces and how are the different constructions
related? How are barcodes defined formally? How does one compute the barcode of
filtrations of simplicial complexes? What can one learn about the data from the barcode?
What are the metrics for the stability theorem and how could one prove it?
After that, there are several possible topics that could be chosen according to the

interests of the participants.
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1. Homology computation and standard complex constructions (Maurice)

Give a very brief review of simplicial complexes and their homology (any standard alge-
braic topology reference you like will do). Explain how to compute simplicial homology
via matrix reduction/smith normal form, maybe compute a small example ([5, Section
3.1], [12, §1.11]. Define the standard Rips, Čech, and Delaunay/alpha complexes to
construct simplicial complexes from point clouds/finite metric spaces, explain that they
form filtrations, maybe draw some examples ([5, Section 1.5], [13, Definition 3, Sections
5.2.1-5.2.3]).

2. More on the standard complex constructions (Jiajun)

State the most important results pertaining to the previously introduced constructions:
Inclusions between Rips and Čech ([5, Corollary 1.12]), homotopy equivalence between
Delaunay and Čech ([2, Čech-Delaunay Collapsing Theorem] without the part about
Wrap complexes), nerve theorem ([5, Section 4.2]), Nyiogi–Smale–Weinberger theorem
([5, Theorem 5.4]). Draw pictures and present proof ides as you see fit. If time permits
you can also present [5, Theorem 5.5].

3. Persistence modules and their structure theory (Merik)

Define persistent Betti numbers (parts of [5, Section 5.2]), persistence modules as poset
representations, interval modules, barcodes, and persistence diagrams [5, Section 6] . Ex-
plain barcode uniqueness via the Krull–Remak–Schmidt–Azumaya theorem ([9, Theorem
2.7]). State Crawley-Boevey’s Theorem on existence of barcodes for PFD persistence
modules with totally ordered index set ([5, Theorem 6.18]). If time permits maybe prove
it for the special case of a finite index set ([5, Theorem 6.16]).

4. Persistent homology and barcode computation (Dani)

Explain that the matrix reduction algorithm from the first talk not only computes Betti
numbers of a single complex, but actually yields the barcode of a whole filtration if
the rows and columns of the matrix are ordered correctly [5, Section 7.1], [1, Section
3.1]. Talk about how to speed this computation up by using clearing [5, Section 7.2], [1,
Section 3.2] and cohomology-based algorithms [5, Section 8.3], [1, Section 3.3]).

5. Stability theorem (Kevin W.)

Define the bottleneck [5, Definition 9.4] and interleaving distances [5, Definition 9.12],
explain that they are extended pseudo-metrics, state the algebraic stability (or isometry)
theorem [5, Theorem 9.13]. State the stability theorem for sublevel set persistence [5,
Theorem 9.6], state stability theorems for the standard simplicial filtrations [5, Theorems
9.7 and 9.8] and prove all these theorems assuming algebraic stability [5, page 57]. If
time permits: prove the converse algebraic stability part of the isometry theorem, i.e.
dI ≤ dB [5, Section 13.1].

2



6. Mapper (Fernando)

Define the Reeb graph of a real-valued function on a manifold, show that it is a topo-
logical graph [5, Section 11.1]. Define the continuous mapper associated to a function
and a cover of the reals [5, Section 11.2]. Define the mapper of a filtered point cloud,
briefly talk about possible clustering methods to use [5, Sections 10.3 and 11.3]. Show
pictures of examples [16], show pictures detailing how the output depends on the choices
involved [8].

7. More representation theory and multiparameter persistence (Julia)

Talk about quiver representations, Gabriel’s theorem, wild/tame representation type
[14, Section 1.1]. Explain why multiparameter persistence modules (i.e. ones indexed by
Rd) do not admit barcode decompositions in general [5, Section 12.2]. Sketch a possible
remedy through signed barcodes [6, Corollary 5.1].

8. Clustering (Dia)

Present some classical clustering methods, interpret hierarchical clustering as H0 persis-
tence, show non-existence of ideal clustering, ToMaTo ([5, Section 10.1-10.2]).

9. Covid phylogenetic tree (Kevin K.)

Explain what a phylogenetic tree is and how persistent homology can potentially be used
on such trees to find adaptive mutations of viruses following [4].

10. Cosmic microwave background (Enya)

Explain what the cosmic microwave background is and how persistent homology can be
used to detect possible non-Gaussianity in it following [15].
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